

Journal of Organometallic Chemistry 489 (1995) 153-159

Synthetic and structural studies of methyl- and phenylpalladium(II) complexes of poly(pyrazol-1-yl)borates, and the η^3 -allylpalladium(II) complex Pd(η^3 -C₃H₅){(pz)₃BH-N,N'}

Allan J. Canty ^{a.*}, Hong Jin ^a, Andrew S. Roberts ^a, Peter R. Traill ^a, Brian W. Skelton ^b, Allan H. White ^b

> ^a Department of Chemistry, University of Tasmania, Hobart, Tas. 7001, Australia ^b Department of Chemistry, University of Western Australia, Nedlands, WA 6009, Australia

> > Received 24 June 1994

Abstract

The poly(pyrazol-1-yl)borate complexes PdMe{(pz)₃BR-N,N'}(PPh₃) (R = H, pz) are formed on the reaction of [PdMe(SMe₂)(μ -I)]₂ with K[(pz)₃BR] in the presence of PPh₃ and TlPF₆, and the phenylpalladium(II) analogues are formed directly from PdIPh(tmeda) (tmeda = N,N,N',N'-tetramethylethylenediamine) and K[(pz)₃BR] in the presence of PPh₃. X-ray diffraction studies of PdR{(pz)₄B-N,N'}(PPh₃) (R = Me, Ph) and PdPh{(pz)₃BH-N,N'}(PPh₃) reveal square planar geometry for palladium with the poly(pyrazol-1-yl)borate ligands in bidentate mode. The structure of Pd(η^3 -C₃H₅){(pz)₃BH-N,N'} has also been determined, and it contains a bidentate tris(pyrazol-1-yl)borate group with the η^3 -allyl group forming a dihedral angle of 125.5(2.1)° with the PdN₂ plane. In both PdPh{(pz)₃BH-N,N'}(PPh₃) and Pd(η^3 -C₃H₅){(pz)₃BH-N,N'} the uncoordinated pyrazole group lies above the coordination plane.

Keywords: Palladium; Poly(pyrazol-I-yl)borates; Allyl; Crystal structure

1. Introduction

An extensive organopalladium chemistry of poly (pyrazol-1-yl)borate ligands $[(pz)_n BR_{4-n}]^-$ has been developed [1,2], but synthetic studies have not been reported for simple methylpalladium(II) and phenylpalladium(II) species, and structural studies are restricted to Pd{2-(NMe_2CH_2)C_{10}H_6-C,N}{(pz)_3BH-N,N'}.1/2MeOH [3], palladium(IV) complexes PdMe_3-{(pz)_3BR-N,N',N''} (R = H, pz) [2,4], and the η^3 -allylpalladium(II) complex {Pd(η^3 -C₃H₅)₂}₂{(pz)_3B-B(pz)_3-N,N',N''} [5]. In developing oxidation state + IV organopalladium chemistry [6] we have found that some of the most stable complexes are those containing tris(pyrazol-1-yl)borate as a supporting ligand [4,7], and that use of these ligands coordinated to Pd^{II}Me₂ and Pd^{II}MePh substrates has allowed the

first observation of oxidation of palladium(II) to palladium(IV) by water in unusual reactions involving both oxidation and methyl group transfer to form Pd^{IV}Me₃ and Pd^{II}R (R = Me, Ph respectively) products [4]. As part of a programme aimed at further developing aspects of poly(pyrazol-1-yl)borate chemistry of palladium relevant to these reactions, we report here the synthesis of the fundamental complexes PdR{(pz)₃BR'-N,N'}(PPh₃) (R = Me, Ph; R' = H, pz) and structural studies of three of the complexes together with Pd(η^3 -C₃H₅){(pz)₃BH-N,N'}.

2. Experimental details

The reagents $[PdMe(SMe_2)(\mu-I)]_2$ [8] and PdIPh (tmeda) [9] were prepared as previously described, and the synthesis of $Pd(\eta^3-C_3H_5)\{(pz)_3BH\}$ has been reported [1]. NMR spectra were recorded with a Bruker AM 300 spectrometer, and chemical shifts are given in ppm relative to Me_4Si .

0022-328X/95/ $00.50 \otimes 1995$ Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05130-5

^{*} Corresponding author.

2.1. Synthesis of $PdMe\{(pz)_3BH\}(PPh_3)$ (1) and $PdMe\{(pz)_4B\}(PPh_3)$ (2)

A solution of $[PdMe(SMe_2)(\mu-I)]_2$ (0.03 g, 0.05 mmol) and K[(pz)₃BH] (0.024 g, 0.10 mmol) in tetrahydrofuran (15 ml) was treated with $TIPF_6$ (0.035 g, 0.10 mmol). A yellow solid was formed immediately. The mixture was stirred for 15 min, PPh₃ (0.025 g, 0.10 mmol) added, and after further stirring for 2-3 h the solvent was removed under vacuum. The residue was extracted with acetone $(2 \times 3 \text{ ml})$ and added to water (10 ml) to give a fine white suspension. The solid was collected after centrifugation and vacuum dried (0.056 g, 95%). Anal. Found: C, 55.9; H, 4.7; N, 13.6, C₂₈H₂₈BN₆PPd Calc.: C, 56.3; H, 4.7; N, 14.1%. ¹H NMR (CDCl₃): δ 7.34–7.45 (15H, m, Ph), 7.64 (3H, d, H(3 or 5), ${}^{3}J = 2.1$ Hz), 7.18 (3H, s(br), H(3 or 5)), 6.11 (3H, 't', H(4)), 0.41 (3H, d, PdMe, ${}^{3}J_{(HP)} = 3$ Hz). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 141 (C(3 or 5)), 136.3 (*p*-Ph), 135 (d, m-Ph), 131.2 (C(3 or 5)), 129 (d, o-Ph), 105.5 (C(4)), 2.7 (br, PdMe).

Complex (2) was obtained analogously (89%). Anal. Found: C, 56.0; H, 4.7; N, 16.0, $C_{31}H_{30}BN_8PPd$ Calc.: C, 56.2; H, 4.6; N, 16.3%. ¹H NMR (CDCl₃): δ 7.7 (4H, s(b), H(3 or 5)), 7.3–7.5 (15H, m, Ph), 7.1 (2H, s(br), H(3 or 5)), 6.3 (4H, s(br), H(4)), 0.33 (3H, d, PdMe, ${}^{3}J_{(HP)} = 3.3$ Hz). ¹³C{¹H} NMR (CDCl₃): δ 141.9 (C(3 or 5)), 135.9 (*p*-Ph), 135 (d, *m*-Ph), 131 (C(3 or 5)), 128.9 (d, *o*-Ph), 105.6 (C(4)), 2.4 (d, ${}^{2}J_{(P-C)} = 7.5$ Hz, PdMe).

2.2. Synthesis of $PdPh\{(pz)_3BH\}(PPh_3)$ (3) and $PdPh\{(pz)_4B\}(PPh_3)$ (4)

A solution of PdIPh(tmeda) (0.038 g, 0.089 mmol) and K[(pz)₃BH] (0.031 g, 0.123 mmol) in acetone (8 ml) was warmed at ca. 50°C for 2 min, and PPh₃ (0.023 g, 0.089 mmol) was added. On rotary evaporation to a volume of ~ 2 ml and addition of water (3 ml) a fine white suspension formed. After centrifugation solid (3) was collected, washed with water, and vacuum dried (0.052 g, 82%). Anal. Found: C, 59.9; H, 4.7; N, 12.7, $C_{33}H_{30}BN_6PPd$ Calc.: C, 60.2; H, 4.6; N, 12.8%. ¹H NMR (CDCl₃): δ 7.7 (3H, d, H(3 or 5)), 7.35–7.15 (15H, m, Ph), 7.07 (s, H(3 or 5)) and 7.07–7.01 (m, PdPh), 6.75–6.69 (m, PdPh), 6.09 (3H, 't', H (4)). ¹³C{¹H} NMR (CDCl₃): δ 142.2 (C(3 or 5)), 136.2 (*p*-Ph), 135 (d, *m*-Ph), 131.1 (C(3 or 5)), 130.9, 130.2, 128.9 (d, *o*-Ph), 128.2 (PdPh), 123.7 (PdPh), 105 (C(4)).

Complex (4) was obtained analogously (82%). Anal. Found: C, 59.4; H, 4.4; N, 14.8, $C_{36}H_{32}BN_8PPd$ Calc.: C, 59.7; H, 4.5; N, 15.5%. ¹H NMR ((CD₃)₂CO): δ 7.6 (m(br), H(3 or 5)) and 7.5–7.4 (m(br), Ph), 7.2 (br, H(3

Table 1

Crystal data and refinement parameters for PdMe{(pz)₄B}(PPh₃) (2), PdPh{(pz)₃BH}(PPh₃) (3), PdPh{(pz)₄B}(PPh₃) (4), and Pd(η^3 -C₃H₅)((pz)₃BH} (5) ^a

	(2) ^b	(3) ^c	(4)	(5)
Formula	C ₃₁ H ₃₀ BN ₈ PPd	C ₃₃ H ₃₀ BN ₆ PPd	C ₃₆ H ₃₂ BN ₈ PPd	$C_{12}H_{15}BN_6Pd$
Space group	$P2_{1}/c$ (No. 14)	P1 (No. 2)	$P2_1/c$ (No. 14)	<i>Pbca</i> (No. 61)
a (Å)	14.142(11)	14.394(29)	18.295(5)	17.931(7)
b (Å)	14.912(8)	10.979(11)	8.930(4)	18.351(7)
c (Å)	16.500(23)	9.745(14)	20.919(5)	8.645(4)
β (deg)	119.90(8)	92.83(14)	100.00(2)	
V (Å)	3016(6)	1536(4)	3366(2)	2845(2)
Ζ	4	2	4	8
Mol. wt.	662.8	658.8	724.9	360.5
$D_{\rm calc}~({\rm g~cm^{-3}})$	1.46	1.42	1.43	1.68
Crystal size (mm ³)	0.18 imes 0.29 imes 0.29	0.28 imes 0.23 imes 0.04	0.26 imes 0.58 imes 0.24	$0.19 \times 0.35 \times 0.51$
μ (cm ⁻¹)	6.2	6.9	3.8	13.0
F(000)	1352	672	1480	1440
$2\theta_{max}$ (deg)	50	50	60	60
A_{\min}^*	1.09, 1.17	1.03, 1.17	1.14, 1.21	1.27, 1.51
N	5110	4256	9600	6243
N_0	3540	2712	6355	1949
Ř	0.052	0.052	0.038	0.063
R _w	0.055	0.052	0.039	0.065

^a For all of the complexes assignment of uncoordinated ring nitrogen atoms was made on the basis of refinement behaviour and associated difference map residues indicative of associated hydrogen atoms.

^b The methyl substituent upon refinement yielded an unrealistic very small thermal tensor; examination of a difference map showed an artefact more distant from the metal, and, having regard to the method of synthesis of the complex, a fractional iodine was disposed thus and successfully refined, population of the iodine and methyl not being inconsistent with a totality of unity. The latter constraint was applied and the model refined meaningfully, with site occupancies converging to $x_C = 0.945(2)$, $1 - x_C = x_1 = 1 - 0.945(2)$, and with tolerable geometries and thermal parameter behaviour.

 $^{c} \alpha = 92.95(10)^{\circ}, \ \gamma = 90.91(12)^{\circ}.$

or 5)) and 7.08 (m(br), PdPh), 6.87–6.78 (m, PdPh), 6.47 (br, H(4)). ${}^{13}C{}^{1}H$ NMR (CDCl₃) δ 142.8 (br, C(3 or 5)), 136.3 (b, *p*-Ph), 135 (d, *m*-Ph), 131 (C(3 or 5)), 130.8, 130.1, 128.9 (d, *o*-Ph), 128.1 (PdPh), 126.1 (PdPh), 123.7 (PdPh), 105.6 (C(4)).

2.3. Crystallography

Complex (2) crystallized on slow evaporation of a solution in diethyl ether, complexes (3) and (4) were obtained similarly from acetone and hexane respectively, and complex (5) was recrystallized from 4:1 water/acetone. Samples of complex (2) were also ex-

Table 2 Non-hydrogen atom coordinates and equivalent isotropic displacement parameters for $PdMe\{(pz)_4B\}(PPh_3)$ (2)

Atom	x	у	z	$U_{\rm eq}$ (Å ²)
Pd	0.48654(4)	0.20305(4)	0.20484(3)	0.0354(2)
P (1)	0.3047(1)	0.1987(1)	0.1443(1)	0.0366(8)
C(111)	0.2487(6)	0.3121(4)	0.1233(5)	0.040(3)
C(112)	0.1520(6)	0.3360(5)	0.0430(5)	0.054(4)
C(113)	0.1179(7)	0.4256(7)	0.0296(6)	0.073(5)
C(114)	0.1770(8)	0.4893(6)	0.0952(8)	0.076(6)
C(115)	0.2729(8)	0.4665(5)	0.1738(7)	0.066(5)
C(116)	0.3076(6)	0.3784(5)	0.1873(6)	0.055(4)
C(121)	0.2241(5)	0.1407(5)	0.0314(5)	0.041(3)
C(122)	0.1160(6)	0.1185(5)	0.0005(5)	0.055(4)
C(123)	0.0536(7)	0.0791(6)	-0.0862(6)	0.069(4)
C(124)	0.0978(8)	0.0625(6)	-0.1413(5)	0.070(5)
C(125)	0.2048(7)	0.0817(6)	-0.1110(5)	0.063(5)
C(126)	0.2687(6)	0.1214(5)	-0.0238(5)	0.048(4)
C(131)	0.2584(5)	0.1472(5)	0.2174(4)	0.038(3)
C(132)	0.2423(6)	0.0541(5)	0.2155(5)	0.045(3)
C(133)	0.2131(6)	0.0133(5)	0.2756(5)	0.051(4)
C(134)	0.1994(6)	0.0650(6)	0.3376(5)	0.056(4)
C(135)	0.2143(6)	0.1572(6)	0.3415(5)	0.056(4)
C(136)	0.2462(6)	0.1968(5)	0.2831(5)	0.047(3)
C *	0.454(2)	0.282(1)	0.095(1)	0.051(6)
I *	0.460(2)	0.304(1)	0.075(1)	0.041(6)
В	0.6925(6)	0.2446(6)	0.4136(5)	0.040(4)
N(11)	0.6348(4)	0.1584(4)	0.4132(4)	0.038(3)
N(12)	0.5432(4)	0.1293(3)	0.3330(4)	0.039(3)
C(13)	0.5135(6)	0.0533(5)	0.3557(5)	0.049(4)
C(14)	0.5811(6)	0.0336(5)	0.4497(5)	0.052(4)
C(15)	0.6564(6)	0.1012(5)	0.4842(5)	0.053(4)
N(21)	0.7254(4)	0.2401(4)	0.3370(4)	0.038(3)
N(22)	0.6506(4)	0.2183(3)	0.2463(3)	0.040(3)
C(23)	0.7058(6)	0.2180(6)	0.2020(5)	0.059(4)
C(24)	0.8138(7)	0.2379(6)	0.2588(6)	0.069(5)
C(25)	0.8235(6)	0.2509(6)	0.3449(6)	0.060(4)
N(31)	0.6171(4)	0.3238(3)	0.3969(3)	0.035(3)
N(32)	0.6251(5)	0.4046(4)	0.3626(4)	0.057(3)
C(33)	0.5595(7)	0.4597(5)	0.3749(5)	0.059(4)
C(34)	0.5127(7)	0.4159(6)	0.4194(6)	0.062(5)
C(35)	0.5476(7)	0.3306(5)	0.4301(5)	0.054(4)
N(41)	0.7990(5)	0.2572(4)	0.5081(4)	0.045(3)
N(42)	0.8730(5)	0.1898(5)	0.5453(3)	0.061(3)
C(43)	0.9615(6)	0.2275(6)	0.6160(5)	0.061(4)
C(44)	0.9462(6)	0.3184(6)	0.6231(5)	0.060(4)
C(45)	0.8411(6)	0.3353(5)	0.5529(5)	0.054(4)

^a Site occupancy factors: C = 0.945(2), I = 1 - 0.945(2).

Table	13

Non-hydrogen atom coordinates and equivalent isotropic displacement parameters for PdPh{ $(pz)_3BH$ }(PPh_3) (3)

Atom	x	у	z	$U_{\rm eq}$ (Å ²)
Pd	0.16089(5)	0.18208(7)	0.17497(8)	0.0381(2)
P (1)	0.2920(2)	0.0876(2)	0.1175(3)	0.0415(9)
C(111)	0.3421(6)	-0.0308(8)	0.2208(9)	0.046(4)
C(112)	0.2958(7)	-0.1400(9)	0.235(1)	0.062(4)
C(113)	0.3349(8)	-0.2317(9)	0.311(1)	0.069(5)
C(114)	0.4227(9)	-0.213(1)	0.373(1)	0.073(5)
C(115)	0.4697(8)	-0.108(1)	0.359(1)	0.076(5)
C(116)	0.4310(8)	- 0.0160(9)	0.284(1)	0.067(5)
C(121)	0.2827(6)	0.0188(8)	-0.0571(9)	0.042(3)
C(122)	0.3416(7)	-0.0707(9)	-0.104(1)	0.056(4)
C(123)	0.3349(7)	-0.114(1)	-0.239(1)	0.070(5)
C(124)	0.2707(8)	-0.065(1)	-0.329(1)	0.071(5)
C(125)	0.2109(8)	0.023(1)	-0.284(1)	0.067(5)
C(126)	0.2168(6)	0.0657(8)	-0.1471(9)	0.047(4)
C(131)	0.3848(6)	0.2025(8)	0.115(1)	0.043(4)
C(132)	0.4406(7)	0.2174(9)	0.007(1)	0.057(4)
C(133)	0.5065(8)	0.310(1)	0.010(1)	0.071(5)
C(134)	0.5172(8)	0.389(1)	0.124(2)	0.078(6)
C(135)	0.4610(8)	0.377(1)	0.232(1)	0.081(5)
C(136)	0.3956(7)	0.2841(9)	0.231(1)	0.055(4)
C(1)	0.1101(6)	0.0215(8)	0.2190(9)	0.043(4)
C(2)	0.1010(8)	-0.0113(9)	0.351(1)	0.059(4)
C(3)	0.0547(8)	-0.119(1)	0.381(1)	0.074(5)
C(4)	0.0187(8)	- 0.1975(9)	0.277(1)	0.065(5)
C(5)	0.0297(6)	-0.1693(9)	0.146(1)	0.056(4)
C(6)	0.0739(6)	-0.0616(8)	0.1154(9)	0.045(4)
В	0.1288(9)	0.463(1)	0.310(1)	0.059(5)
N(11)	0.1717(5)	0.4610(7)	0.1699(8)	0.055(3)
N(12)	0.1984(5)	0.3557(7)	0.1057(8)	0.050(3)
C(13)	0.2289(7)	0.3863(9)	-0.013(1)	0.056(4)
C(14)	0.2235(8)	0.511(1)	-0.028(1)	0.070(5)
C(15)	0.1864(8)	0.5531(9)	0.091(1)	0.072(5)
N(21)	0.0405(6)	0.3802(7)	0.2996(8)	0.055(3)
N(22)	0.0401(5)	0.2634(7)	0.2465(7)	0.046(3)
C(23)	-0.462(7)	0.2219(9)	0.2518(9)	0.050(4)
C(24)	-0.1027(7)	0.310(1)	0.309(1)	0.064(5)
C(25)	-0.0459(8)	0.408(1)	0.336(1)	0.061(4)
N(31)	0.1984(6)	0.4192(7)	0.4252(8)	0.055(3)
N(32)	0.2732(7)	0.4920(9)	0.459(1)	0.088(5)
C(33)	0.3173(9)	0.434(1)	0.559(1)	0.090(6)
C(34)	0.273(1)	0.327(1)	0.558(1)	0.083(6)
C(35)	0.1979(8)	0.323(1)	0.498(1)	0.070(5)

amined by X-ray microprobe analysis and simple tests for the presence of iodide using $AgNO_3$. Iodide could not be detected in the sample obtained from the preparation, but single crystals similar to those examined crystallographically were shown by microprobe analysis to contain a small amount of iodide.

For each complex a unique data set was measured at 295 K using an Enraf-Nonius CAD-4 diffractometer operating in conventional $2\theta - \theta$ scan mode with monochromatic Mo K_{α} radiation ($\lambda = 0.71073$ Å), yielding N independent reflections, N_o with $I > 3\sigma(I)$ considered observed and used in the full matrix leastsquares refinement after analytical absorption correction, and solution of the structures by vector methods. Residuals R and R_w are quoted on |F| at convergence; statistical weights derived from $\sigma^2(I) = \sigma^2(I_{diff})$ + 0.0004 $\sigma^4(I_{diff})$ were employed. Neutral atom complex scattering factors were used [10]; computation used the XTAL 3.0 program system implemented by Hall [11]. Crystal data, coordinates and equivalent isotropic thermal parameters for the non-hydrogen atoms, and geometries of the complexes are given in Tables 1–5, and views of the complexes are shown in Figs. 1 and 2.

Table 4

Non-hydrogen atom coordinates and equivalent isotropic displacement parameters for PdPh{ $(pz)_4 B$ }(PPh $_3$) (4)

Atom	x	У	z	$U_{\rm eq}$ (Å ²)
Pd	0.71602(1)	0.95938(3)	0.83707(1)	0.03463(7)
P (1)	0.82955(4)	0.99346(9)	0.89612(4)	0.0357(2)
C(111)	0.8621(2)	1.1816(3)	0.9212(1)	0.038(1)
C(112)	0.8398(2)	1.2458(4)	0.9748(2)	0.052(1)
C(113)	0.8617(2)	1.3891(4)	0.9936(2)	0.063(1)
C(114)	0.9055(2)	1.4687(4)	0.9594(2)	0.070(2)
C(115)	0.9276(2)	1.4072(4)	0.9065(2)	0.073(2)
C(116)	0.9055(2)	1.2639(4)	0.8868(2)	0.055(1)
C(121)	0.8369(2)	0.8928(3)	0.9725(1)	0.037(1)
C(122)	0.8947(2)	0.9174(4)	1.0240(2)	0.048(1)
C(123)	0.8966(2)	0.8431(4)	1.0821(2)	0.058(1)
C(124)	0.8409(2)	0.7429(4)	1.0890(2)	0.057(1)
C(125)	0.7843(2)	0.7176(4)	1.0384(2)	0.056(1)
C(126)	0.7819(2)	0.7925(4)	0.9805(2)	0.046(1)
C(131)	0.9032(2)	0.9223(3)	0.8555(1)	0.039(1)
C(132)	0.9632(2)	0.8410(4)	0.8868(2)	0.048(1)
C(133)	1.0176(2)	0.7917(4)	0.8531(2)	0.065(2)
C(134)	1.0121(2)	0.8234(5)	0.7884(2)	0.074(2)
C(135)	0.9524(2)	0.9028(5)	0.7567(2)	0.070(2)
C(136)	0.8977(2)	0.9518(4)	0.7897(2)	0.055(1)
C(1)	0.6863(2)	1.1441(4)	0.8792(1)	0.039(1)
C(2)	0.6891(2)	1.2811(4)	0.8488(2)	0.047(1)
C(3)	0.6657(2)	1.4116(4)	0.8743(2)	0.061(1)
C(4)	0.6381(2)	1.4055(5)	0.9310(2)	0.074(2)
C(5)	0.6346(2)	1.2722(6)	0.9619(2)	0.071(2)
C(6)	0.6583(2)	1.1406(4)	0.9368(2)	0.055(1)
В	0.6512(2)	0.8441(4)	0.6894(2)	0.037(1)
N (11)	0.7140(1)	0.7430(3)	0.7242(1)	0.0369(8)
N(12)	0.7426(1)	0.7649(3)	0.7884(1)	0.0414(9)
C(13)	0.7910(2)	0.6545(4)	0.8047(2)	0.050(1)
C(14)	0.7951(2)	0.5629(4)	0.7532(2)	0.056(1)
C(15)	0.7457(2)	0.6216(4)	0.7031(2)	0.050(1)
N(21)	0.5906(1)	0.8622(3)	0.7318(1)	0.0376(8)
N(22)	0.6068(1)	0.9271(3)	0.7914(1)	0.0395(8)
C(23)	0.5426(2)	0.9516(4)	0.8111(2)	0.047(1)
C(24)	0.4841(2)	0.9042(4)	0.7638(2)	0.055(1)
C(25)	0.5159(2)	0.8491(4)	0.7149(2)	0.046(1)
N(31)	0.6795(1)	1.0005(3)	0.6781(1)	0.0381(8)
N(32)	0.7461(2)	1.0235(3)	0.6597(1)	0.053(1)
C(33)	0.7467(2)	1.1689(4)	0.6460(2)	0.064(2)
C(34)	0.6824(2)	1.2401(4)	0.6543(2)	0.061(1)
C(35)	0.6413(2)	1.1291(4)	0.6746(2)	0.051(1)
N(41)	0.6169(1)	0.7734(3)	0.6249(1)	0.0418(9)
N(42)	0.5969(2)	0.6262(3)	0.6203(1)	0.055(1)
C(43)	0.5677(2)	0.6058(5)	0.5589(2)	0.063(1)
C(44)	0.5674(2)	0.7349(5)	0.5232(2)	0.068(2)
C(45)	0.5991(2)	0.8398(4)	0.5667(2)	0.054(1)

Table f)
-----------	---

Non-hydrogen atom coordinates and equivalent isotropic displacement parameters for $Pd(\eta^3-C_3H_5){(pz)_3BH}$ (5)

Atom	x	у	z	$U_{\rm eq}$ (Å ²)
Pd	0.57601(4)	0.44118(4)	-0.12550(9)	0.0391(2)
В	0.6528(7)	0.3871(6)	0.213(1)	0.038(4)
N(11)	0.6603(5)	0.4692(4)	0.1737(9)	0.038(3)
N(12)	0.6470(5)	0.4940(4)	0.030(1)	0.040(3)
C(13)	0.6747(6)	0.5614(6)	0.024(1)	0.044(3)
C(14)	0.7046(6)	0.5799(6)	0.166(1)	0.052(4)
C(15)	0.6955(6)	0.5204(6)	0.254(1)	0.051(4)
N(21)	0.5730(5)	0.3585(4)	0.1836(9)	0.041(3)
N(22)	0.5375(4)	0.3694(4)	0.045(1)	0.040(3)
C(23)	0.4759(6)	0.3337(6)	0.052(1)	0.047(4)
C(24)	0.4678(7)	0.2976(6)	0.192(1)	0.052(4)
C(25)	0.5304(7)	0.3144(6)	0.269(1)	0.054(4)
N(31)	0.7078(4)	0.3425(4)	0.117(1)	0.039(3)
N(32)	0.7813(5)	0.3602(5)	0.121(1)	0.057(3)
C(33)	0.8151(6)	0.3136(7)	0.029(1)	0.055(4)
C(34)	0.7643(8)	0.2658(6)	-0.039(1)	0.058(5)
C(35)	0.6983(7)	0.2862(6)	0.019(2)	0.062(5)
C(1)	0.5913(9)	0.5074(8)	-0.321(1)	0.078(6)
C(2)	0.566(1)	0.4462(7)	-0.363(1)	0.113(7)
C(3)	0.5082(7)	0.4085(7)	-0.309(1)	0.060(4)

Tables of thermal parameters and calculated hydrogen atom positions, and details of the ligand geometries, have been deposited with the Cambridge Crystallographic Data Centre.

3. Results and discussion

The complexes $[PdMe(SMe_2)(\mu-X)]_2$ (X = Cl, Br, I) [8] and PdIPh(tmeda) [9] have been reported to be ideal substrates for the synthesis of methyl- and phenyl-palladium(II) complexes [9,12–18], and the required poly(pyrazol-1-yl)borate complexes were readily obtained by use of these substrates, as shown in Eqs. (1) and (2).

$$\frac{1/2[PdMe(SMe_2)(\mu-I)]_2 + K[(pz)_3BR]}{+ PPh_3 + TIPF_6}$$

$$\longrightarrow PdMe\{(pz)_3BR\}(PPh_3)$$

$$+ TII + KPF_6 + SMe_2 \qquad R = H (1), pz (2)$$
(1)

PdIPh(tmeda) + K[(pz)₃BR] + PPh₃ \longrightarrow PdPh{(pz)₃BR}(PPh₃) + KI + tmeda R = H (3), pz (4)

All the complexes exhibit a single environment for the pyrazole rings in ¹H NMR spectra, and for the tetrakis(pyrazol-l-yl)borate complexes the resonances for these protons are broad, consistent with the expected stereochemical nonrigidity as observed for related palladium(II) complexes of tripodal nitrogen donor ligands [1,2,15].

(2)

Table 6

Coordination geometry for the palladium atom in $PdMe\{(pz)_4B\}(PPh_3)$ (2), $PdPh\{(pz)_3BH\}(PPh_3)$ (3), and $PdPh\{(pz)_4B\}(PPh_3)$ (4)

	(2) ^a	(3)	(4)	
Distances (Å) ^b				
Pd-C(1)	2.02(2)	1.973(9)	1.990(3)	
Pd-P(1)	2.248(3)	2.249(4)	2.2452(9)	
Pd-N(12), N(22)	2.153(6), 2.078(6)	2.126(8), 2.100(8)	2.113(3), 2.079(2)	
Angles (°)				
C(1) - Pd - P(1)	85.3(6)	87.9(3)	86.64(8)	
C(1)-Pd-N(12), N(22)	171.7(5), 87.1(6)	171.4(3), 89.1(3)	176.93(9), 90.2(1)	
P(1)-Pd-N(12), N(22)	101.9(2), 172.4(2)	96.4(2), 174.7(2)	96.23(7), 174.07(7)	
N(12)-Pd-N(22)	85.7(2)	87.1(3)	87.0(1)	
Pd-P(1)-C(111), C(121)	110.5(2), 117.2(3)	121.5(3), 112.1(3)	120.42(9), 109.7(1)	
Pd-P(1)-C(131)	115.5(2)	108.3(3)	112.5(1)	
Pd-N(12)-N(11), C(13)	119.5(4), 134.3(4)	122.0(6), 130.4(7)	120.7(2), 133.1(2)	
Pd-N(22)-N(21), C(23)	120.8(5), 134.0(4)	121.8(6), 132.0(6)	121.3(2), 131.8(2)	
Pd-C(1)-C(2), C(6)		122.5(7), 121.3(7)	119.7(2), 122.4(3)	
Distances (Å) from the mean co	ordination planes 'PdCN ₂ P'			
Pd	-0.002(1)	-0.001(1)	0.025(1)	
С	0.13(2)	-0.16(1)	-0.059(4)	
Р	0.002(3)	0.013(3)	0.017(1)	
N(12), N(22)	0.013(8), 0.022(7)	-0.11(1), 0.138(8)	-0.029(3), 0.118(3)	
Distances (Å) of palladium from	the ' C_3N_2 ' mean planes of coordin	nated pz groups		
Ring 1	0.05(1)	0.41(2)	0.224(5)	
Ring 2	0.12(1)	0.00(2)	0.085(5)	
Dihedral angles (°) between coo	rdination planes and pz and phenyl	planes		
Ring 1	41.7(2)	43.1(3)	37.1(1)	
Ring 2	42.0(3)	32.7(3)	33.4(1)	
Phenyl		76.6(3)	89.2(1)	

^a Refined as $PdI_{0.05}Me_{0.95}{(pz)_4B}(PPh_3)$. Pd-I = 2.49(2) Å.

^b Shortest intramolecular contacts from Pd to uncoordinated pz ring: Pd...N(31) = 3.295(6) (2), 3.491(8) (3), 3.297(3) Å (4). Complex (2) has C(34)...H(116) ~ 2.67 and N(32)...H(136) ~ 2.73 Å.

The crystal of complex (2) examined by X-ray diffraction is apparently an impure sample of PdMe $\{(pz)_4B\}(PPh_3)$, containing a small amount of iodide in

place of a methyl group (Table 1). Thus structural parameters for the major component of the crystal, $PdMe\{(pz)_4B\}(PPh_3)$, are less accurate than those for

Table 7

Distances (Å)				
Pd-C(1)	2.10(1)	Pd-N(12)	2.091(8)	
Pd-C(2)	2.06(1)	Pd-N(22)	2.095(8)	
Pd-C(3)	2.09(1)			
Angles (°)				
C(1)-Pd-C(2)	35.4(5)	C(1)-Pd-N(12), N(22)	99.8(4), 166.9(5)	
C(1)-Pd-C(3)	68.3(5)	C(2)-Pd-N(12), N(22)	132.3(5), 134.4(5)	
C(2)-Pd-C(3)	37.4(6)	C(3)-Pd-N(12), N(22)	167.7(4), 99.4(4)	
C(1)-C(2)-C(3)	130(1)	N(12)-Pd-N(22)	92.2(3)	
Pd-C(1)-C(2)	70.8(8)	Pd-N(12)-N(11), C(13)	123.1(6), 129.0(7)	
Pd-C(2)-C(1), C(3)	73.8(8), 72.3(7)	Pd-N(22)-N(21), C(23)	123.6(6), 129.5(7)	
Pd-C(3)-C(2)	70.4(8)			
Distances (Å) from the plane 'PdN(12	2)N(22)'			
C(1)	-0.19(2)	C(3)	0.14(2)	
C(2)	0.28(2)			
Distances (Å) of palladium from the '	C ₃ N ₂ ' mean planes of coordina	ated pz groups		
ring 1	0.32(2)	ring 2	0.17(2)	
Dihedral angles (°) between angles				
'C(1)C(2)C(3)'/'PdN(12)N(22)'	125.5(2.1)	'ring 1'/'ring 2'	144.0(5)	
'ring 1'/'PdN(12)N(22)	18.8(4)	'ring 1'/'ring 3'	96.4(5)	
'ring 2'/'PdN(12)N(22)	20.3(4)	'ring 2'/'ring 3'	74.1(5)	
'ring 3'/'PdN(12)N(22)	109.5(4)			

^a Shortest intramolecular contact from Pd to uncordinated pz ring: Pd...N(31) = 3.641(8) Å.

the PhPd(II) complexes (Table 5), and are even less reliable for the minor component, PdI{ $(pz)_4B$ }(PPh₃), which has Pd–I 2.49(2) Å compared with 2.5703(8) Å and 2.575(1) Å for the related complexes PdIPh(tmeda) and PdIPh(bpy) (bpy = 2,2'-bipyridyl), respectively [9].

Fig. 1. The molecular structures of (a) $PdMe\{(pz)_4B\}(PPh_3)$ (2), (b) $PdPh\{(pz)_3BH\}(PPh_3)$ (3), and (c) $PdPh\{(pz)_4B\}(PPh_3)$ (4) projected normal to the coordination plane. Hydrogen atoms are shown with an arbitrary radius of 0.1 Å, and 20% thermal ellipsoids are shown for the non-hydrogen atoms.

Fig. 2. Two views of the molecular structure of $Pd(\eta^3-C_3H_5)|(pz)_3BH|$ (5), where (a) is a projection normal to the 'PdN₂' plane.

Aspects of the coordination geometry for the complexes are presented in Tables 6 and 7.

The poly(pyrazol-1-yl)borate ligands form chelate angles of ca. 86–87° for (2)–(4) and 92.2(3)° for (5), and adopt a boat conformation for the six-membered PdN₄B rings in which the uncoordinated ring in (3) and (5) lie above the coordination plane ('axial') rather than in the alternative 'equatorial' position (Fig. 1(b) and 1(d)). A similar axial orientation for uncoordinated planar groups is found in other structural studies of related square planar d^8 complexes of tripod ligands, e.g. $Pd\{(pz)_2BH-N,N'\}_2$, $[Pd(L_3-N,N')_2]^{2+}$ [L₃ = $(pz)_3CH$, tris(pyridin-2-yl)methane] [19], $[PdCl_2-\{(py)_2(pyH)CH-N,N'\}]^+$ [$(py)_2(pyH)CH$ = monoprotonated tris(pyridin-2-yl)methane] [20], AuMe₂- $\{(pz)_3BH-N,N'\}$ [19], and [AuMe₂(L₃-N,N')]⁺ (L₃ = tris(pyridin-2-yl)methanol [21] and tris (*N*-methylimidazol-2-yl)methanol [22]).

Palladium-carbon bond lengths in complexes (2)-(4) are within 1σ of those reported for the related methyland phenylpalladium(II) bidentate nitrogen donor complexes $PdIPh(L_2)$ ($L_2 = tmeda, bpy$) [9], [PdMe- $(bpy)(\gamma-picoline)]BF_4$ [16] and PdClMe(2,9-dimethyl-1,10-phenanthroline) [23]. The largest deviations from the mean coordination planes 'PdCN₂P' are exhibited by C in (2) [0.13(2) Å] and (3) [-0.16(1) Å] and N(22) in (4) [0.118(3) Å]. The phenyl rings form dihedral angles of $76.6(3)^{\circ}$ (3) and $89.2(1)^{\circ}$ (4) with the coordination planes, and the coordinated pyrazole rings form dihedral angles of 32.7(3)-42.0(3)° with the coordination planes. The uncoordinated pyrazole rings above the coordination plane form dihedral angles of $56.2(3)^{\circ}$ (2), $60.1(4)^{\circ}$ (3) and $60.1(1)^{\circ}$ (4) with the coordination planes.

In the η^3 -allylpalladium(II) complex (5) the 'PdN₂' plane forms dihedral angles of 18.8(4) and 20.3(4)° with the coordinated pyrazole planes, and 109.5(4)° with the uncoordinated pyrazole plane. The η^3 -allylpalladium (II) geometry is similar to that found in related complexes of bidentate nitrogen donor ligands [3,24-29]. In particular, the allyl plane is not normal the 'PdN₂' plane, forming a dihedral angle of $125.5(2.1)^{\circ}$ with the central C-H tilted away from palladium, and the central carbon forms a shorter Pd–C bond [2.06(1) Å] than the outer carbon atoms (2.09(1), 2.10(1) Å). The central carbon atoms lies 0.28(2) Å to one side of the 'PdN₂' plane, and the outer carbon atoms lie 0.19(2) and 0.14(2) Å to the other side of the plane. Librational amplitudes for the allyl group are very large, possibly a result of unresolved disorder, and thus the calculated geometries should be treated with caution.

Acknowledgements

We thank the Australian Research Council for financial support, and Johnson Matthey Ltd. for generous loans of palladium chloride.

References

- [1] S. Trofimenko, J. Am. Chem. Soc., 91 (1969) 588.
- [2] P.K. Byers, A.J. Canty and R.T. Honeyman, Adv. Organomet. Chem., 34 (1992) 1.
- [3] J.-M. Valk, F. Maassarani, P. van der Sluis, A.L. Spek, J. Boersma and G. van Koten, Organometallics, 13 (1994) 2320.
- [4] A.J. Canty, R.T. Honeyman, R. Colton, B.W. Skelton and A.H. White, J. Organomet. Chem., 471 (1994) C8.
- [5] C.P. Brock, M.K. Das, R.P. Minton and K. Niedenzu, J. Am. Chem. Soc., 110 (1988) 817.
- [6] A.J. Canty, Acc. Chem. Res., 25 (1992) 83.
- [7] A.J. Canty and P.R. Traill, J. Organomet. Chem., 435 (1992) C8.
- [8] P.K. Byers, A.J. Canty, L.M. Engelhardt and A.H. White, J. Chem. Soc., Dalton Trans., (1986) 1731.
- [9] B.A. Markies, A.J. Canty, W. de Graaf, J. Boersma, M.D. Janssen, M.P. Hogerheide, W.J.J. Smeets, A.L. Spek and G. van Koten, J. Organomet. Chem., (1994) in press.
- [10] J.A. Ibers and W.C. Hamilton (eds.), International Tables for X-ray Crystallography, Vol. 4, Kynoch, Birmingham, 1974.
- [11] S.R. Hall and J.M. Stewart, *The XTAL Users Manual, Version 3.0*, Universities of Western Australia and Maryland, 1990.
- [12] P.K. Byers, A.J. Canty, B.W. Skelton and A.H. White, J. Organomet. Chem., 336 (1987) C55.
- [13] P.K. Byers and A.J. Canty, Organometallics, 9 (1990) 210.
- [14] P.K. Byers, A.J. Canty, B.W. Skelton, P.R. Traill, A.A. Watson and A.H. White, *Organometallics*, 9 (1990) 3080.
- [15] P.K. Byers, A.J. Canty and R.T. Honeyman, J. Organomet. Chem., 385 (1990) 417.
- [16] P.K. Byers, A.J. Canty, B.W. Skelton and A.H. White, J. Organomet. Chem., 393 (1990) 299.
- [17] V.G. Albano, C. Castellari, M.E. Cucciolito, A. Panunzi and A. Vitagliano, Organometallics, 9 (1990) 1269.
- [18] W. de Graaf, J. van Wegen, J. Boersma, A.L. Spek and G. van Koten, *Recl. Trav. Chim. Pays-Bas*, 108 (1989) 275.
- [19] A.J. Canty, N.J. Minchin, L.M. Engelhardt, B.W. Skelton and A.H. White, J. Chem. Soc., Dalton Trans., (1986) 645.
- [20] A.J. Canty, N.J. Minchin, B.W. Skelton and A.H. White, Aust. J. Chem., 45 (1992) 423.
- [21] A.J. Canty, N.J. Minchin, J.M. Patrick and A.H. White, Aust. J. Chem., 36 (1983) 1251.
- [22] A.J. Canty, N.J. Minchin, P.C. Healy and A.H. White, J. Chem. Soc., Dalton Trans., (1982) 1795.
- [23] V. De Felice, V.G. Albano, C. Castellari, M.E. Cucciolito and A. De Renzi, J. Organomet. Chem., 403 (1991) 269.
- [24] S.C. De Sanctis, N.V. Pavel and L. Toniolo, J. Organomet. Chem., 108 (1976) 409.
- [25] L.S. Hegedus, B. Akermark, D.J. Olsen, O.P. Anderson and K. Zetterberg, J. Am. Chem. Soc., 104 (1982) 697.
- [26] B. Crociani, R. Bertani, T. Boschi and G. Bandoli, J. Chem. Soc., Dalton Trans., (1982) 1715.
- [27] A. Albinati, C. Ammann, P.S. Pregosin and H. Ruegger, Organometallics, 9 (1990) 1826.
- [28] A. Togni, G. Rihs, P.S. Pregosin and C. Ammann, *Helv. Chim. Acta*, 73 (1990) 723.
- [29] A. Albinati, R.W. Kunz, C.J. Ammann and P.S. Pregosin, Organometallics, 10 (1991) 1800.